Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
EClinicalMedicine ; 2023.
Article in English | EuropePMC | ID: covidwho-20235670

ABSTRACT

Background Activation of the TREM-1 pathway is associated with outcome in life threatening COVID-19. Data suggest that modulation of this pathway with nangibotide, a TREM-1 modulator may improve survival in TREM-1 activated patients (identified using the biomarker sTREM-1). Methods Phase 2 double-blind randomized controlled trial assessing efficacy, safety, and optimum treatment population of nangibotide (1.0 mg/kg/h) compared to placebo. Patients aged 18–75 years were eligible within 7 days of SARS-CoV-2 documentation and within 48 h of the onset of invasive or non-invasive respiratory support because of COVID-19-related ARDS. Patients were included from September 2020 to April 2022, with a pause in recruitment between January and August 2021. Primary outcome was the improvement in clinical status defined by a seven-point ordinal scale in the overall population with a planned sensitivity analysis in the subgroup of patients with a sTREM-1 level above the median value at baseline (high sTREM-1 group). Secondary endpoints included safety and all-cause 28-day and day 60 mortality. The study was registered in EudraCT (2020-001504-42) and ClinicalTrials.gov (NCT04429334). Findings The study was stopped after 220 patients had been recruited. Of them, 219 were included in the mITT analysis. Nangibotide therapy was associated with an improved clinical status at day 28. Fifty-two (52.0%) of patients had improved in the placebo group compared to 77 (64.7%) of the nangibotide treated population, an odds ratio (95% CI) for improvement of 1.79 (1.02–3.14), p = 0.043. In the high sTREM-1 population, 18 (32.7%) of placebo patients had improved by day 28 compared to 26 (48.1%) of treated patients, an odds ratio (95% CI) of 2.17 (0.96–4.90), p = 0.063 was observed. In the overall population, 28 (28.0%) of placebo treated patients were not alive at the day 28 visit compared to 19 (16.0%) of nangibotide treated patients, an absolute improvement (95% CI) in all-cause mortality at day 28, adjusted for baseline clinical status of 12.1% (1.18–23.05). In the high sTREM-1 population (n = 109), 23 (41.8%) of patients in the placebo group and 12 (22.2%) of patients in the nangibotide group were not alive at day 28, an adjusted absolute reduction in mortality of 19.9% (2.78–36.98). The rate of treatment emergent adverse events was similar in both placebo and nangibotide treated patients. Interpretation Whilst the study was stopped early due to low recruitment rate, the ESSENTIAL study demonstrated that TREM-1 modulation with nangibotide is safe in COVID-19, and results in a consistent pattern of improved clinical status and mortality compared to placebo. The relationship between sTREM-1 and both risk of death and treatment response merits further evaluation of nangibotide using precision medicine approaches in life threatening viral pneumonitis. Funding The study was sponsored by Inotrem SA.

2.
Lancet Respir Med ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20235671

ABSTRACT

BACKGROUND: Activation of the triggering receptor expressed on myeloid cells-1 (TREM-1) pathway is associated with septic shock outcomes. Data suggest that modulation of this pathway in patients with activated TREM-1 might improve survival. Soluble TREM-1 (sTREM-1), a potential mechanism-based biomarker, might facilitate enrichment of patient selection in clinical trials of nangibotide, a TREM-1 modulator. In this phase 2b trial, we aimed to confirm the hypothesis that TREM1 inhibition might improve outcomes in patients with septic shock. METHODS: This double-blind, randomised, placebo-controlled, phase 2b trial assessed the efficacy and safety of two different doses of nangibotide compared with placebo, and aimed to identify the optimum treatment population, in patients across 42 hospitals with medical, surgical, or mixed intensive care units (ICUs) in seven countries. Non-COVID-19 patients (18-85 years) meeting the standard definition of septic shock, with documented or suspected infection (lung, abdominal, or urinary [in patients ≥65 years]), were eligible within 24 h of vasopressor initiation for the treatment of septic shock. Patients were randomly assigned in a 1:1:1 ratio to intravenous nangibotide 0·3 mg/kg per h (low-dose group), nangibotide 1·0 mg/kg per h (high-dose group), or matched placebo, using a computer-generated block randomisation scheme (block size 3). Patients and investigators were masked to treatment allocation. Patients were grouped according to sTREM-1 concentrations at baseline (established from sepsis observational studies and from phase 2a change to data) into high sTREM-1 (≥ 400 pg/mL). The primary outcome was the mean difference in total Sequential Organ Failure Assessment (SOFA) score from baseline to day 5 in the low-dose and high-dose groups compared with placebo, measured in the predefined high sTREM-1 (≥ 400 pg/mL) population and in the overall modified intention-to-treat population. Secondary endpoints included all-cause 28-day mortality, safety, pharmacokinetics, and evaluation of the relationship between TREM-1 activation and treatment response. This study is registered with EudraCT, 2018-004827-36, and Clinicaltrials.gov, NCT04055909. FINDINGS: Between Nov 14, 2019, and April 11, 2022, of 402 patients screened, 355 were included in the main analysis (116 in the placebo group, 118 in the low-dose group, and 121 in the high-dose group). In the preliminary high sTREM-1 population (total 253 [71%] of 355; placebo 75 [65%] of 116; low-dose 90 [76%] of 118; high-dose 88 [73%] of 121), the mean difference in SOFA score from baseline to day 5 was 0·21 (95% CI -1·45 to 1·87, p=0·80) in the low-dose group and 1·39 (-0·28 to 3·06, p=0·104) in the high-dose group versus placebo. In the overall population, the difference in SOFA score from baseline to day 5 between the placebo group and low-dose group was 0·20 (-1·09 to 1·50; p=0·76),and between the placebo group and the high-dose group was 1·06 (-0·23 to 2·35, p=0·108). In the predefined high sTREM-1 cutoff population, 23 (31%) patients in the placebo group, 35 (39%) in the low-dose group, and 25 (28%) in the high-dose group had died by day 28. In the overall population, 29 (25%) patients in the placebo, 38 (32%) in the low-dose, and 30 (25%) in the high-dose group had died by day 28. The number of treatment-emergent adverse events (111 [96%] patients in the placebo group, 113 [96%] in the low-dose group, and 115 [95%] in the high-dose group) and serious treatment-emergent adverse events (28 [24%], 26 [22%], and 31 [26%]) was similar between all three groups. High-dose nangibotide led to a clinically relevant improvement in SOFA score (of two points or more) from baseline to day 5 over placebo in those with higher cutoff concentrations (≥532 pg/mL) of sTREM-1 at baseline. Low dose nangibotide displayed a similar pattern with lower magnitude of effect across all cutoff values. INTERPRETATION: This trial did not achieve the primary outcome of improvement in SOFA score at the predefined sTREM-1 value. Future studies are needed to confirm the benefit of nangibotide at higher concentrations of TREM-1 activation. FUNDING: Inotrem.

3.
N Engl J Med ; 388(21): 1931-1941, 2023 May 25.
Article in English | MEDLINE | ID: covidwho-20241324

ABSTRACT

BACKGROUND: Whether the antiinflammatory and immunomodulatory effects of glucocorticoids may decrease mortality among patients with severe community-acquired pneumonia is unclear. METHODS: In this phase 3, multicenter, double-blind, randomized, controlled trial, we assigned adults who had been admitted to the intensive care unit (ICU) for severe community-acquired pneumonia to receive intravenous hydrocortisone (200 mg daily for either 4 or 7 days as determined by clinical improvement, followed by tapering for a total of 8 or 14 days) or to receive placebo. All the patients received standard therapy, including antibiotics and supportive care. The primary outcome was death at 28 days. RESULTS: A total of 800 patients had undergone randomization when the trial was stopped after the second planned interim analysis. Data from 795 patients were analyzed. By day 28, death had occurred in 25 of 400 patients (6.2%; 95% confidence interval [CI], 3.9 to 8.6) in the hydrocortisone group and in 47 of 395 patients (11.9%; 95% CI, 8.7 to 15.1) in the placebo group (absolute difference, -5.6 percentage points; 95% CI, -9.6 to -1.7; P = 0.006). Among the patients who were not undergoing mechanical ventilation at baseline, endotracheal intubation was performed in 40 of 222 (18.0%) in the hydrocortisone group and in 65 of 220 (29.5%) in the placebo group (hazard ratio, 0.59; 95% CI, 0.40 to 0.86). Among the patients who were not receiving vasopressors at baseline, such therapy was initiated by day 28 in 55 of 359 (15.3%) of the hydrocortisone group and in 86 of 344 (25.0%) in the placebo group (hazard ratio, 0.59; 95% CI, 0.43 to 0.82). The frequencies of hospital-acquired infections and gastrointestinal bleeding were similar in the two groups; patients in the hydrocortisone group received higher daily doses of insulin during the first week of treatment. CONCLUSIONS: Among patients with severe community-acquired pneumonia being treated in the ICU, those who received hydrocortisone had a lower risk of death by day 28 than those who received placebo. (Funded by the French Ministry of Health; CAPE COD ClinicalTrials.gov number, NCT02517489.).


Subject(s)
Anti-Inflammatory Agents , Community-Acquired Infections , Hydrocortisone , Pneumonia , Adult , Humans , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/therapeutic use , Community-Acquired Infections/drug therapy , Community-Acquired Infections/mortality , Double-Blind Method , Hydrocortisone/adverse effects , Hydrocortisone/therapeutic use , Pneumonia/drug therapy , Pneumonia/mortality , Respiration, Artificial , Treatment Outcome
4.
Eur Radiol ; 33(7): 4994-5006, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2256340

ABSTRACT

OBJECTIVE: To describe clinical and early shoulder-girdle MR imaging findings in severe COVID-19-related intensive care unit-acquired weakness (ICU-AW) after ICU discharge. METHODS: A single-center prospective cohort study of all consecutive patients with COVID-19-related ICU-AW from November 2020 to June 2021. All patients underwent similar clinical evaluations and shoulder-girdle MRI within the first month and then 3 months (± 1 month) after ICU discharge. RESULTS: We included 25 patients (14 males; mean [SD] age 62.4 [12.5]). Within the first month after ICU discharge, all patients showed severe proximal predominant bilateral muscular weakness (mean Medical Research Council total score = 46.5/60 [10.1]) associated with bilateral, peripheral muscular edema-like MRI signals of the shoulder girdle in 23/25 (92%) patients. At 3 months, 21/25 (84%) patients showed complete or quasi-complete resolution of proximal muscular weakness (mean Medical Research Council total score > 48/60) and 23/25 (92%) complete resolution of MRI signals of the shoulder girdle, but 12/20 (60%) patients experienced shoulder pain and/or shoulder dysfunction. CONCLUSIONS: Early shoulder-girdle MRI findings in COVID-19-related ICU-AW included muscular edema-like peripheral signal intensities, without fatty muscle involution or muscle necrosis, with favorable evolution at 3 months. Precocious MRI can help clinicians distinguish critical illness myopathy from alternative, more severe diagnoses and can be useful in the care of patients discharged from intensive care with ICU-AW. KEY POINTS: • We describe the clinical and shoulder-girdle MRI findings of COVID-19-related severe intensive care unit-acquired weakness. • This information can be used by clinicians to achieve a nearly specific diagnosis, distinguish alternative diagnoses, assess functional prognosis, and select the more appropriate health care rehabilitation and shoulder impairment treatment.


Subject(s)
COVID-19 , Shoulder , Male , Humans , Middle Aged , Prospective Studies , Intensive Care Units , Muscle Weakness/rehabilitation , Magnetic Resonance Imaging
5.
BMJ Open ; 13(3): e066496, 2023 03 10.
Article in English | MEDLINE | ID: covidwho-2259321

ABSTRACT

INTRODUCTION: Corticosteroids affect variably survival in sepsis trials, suggesting heterogeneity in patients' response to corticosteroids. The RECORDS (Rapid rEcognition of COrticosteRoiD resistant or sensitive Sepsis) trial aimed at defining endotypes associated with adults with sepsis responsiveness to corticosteroids. METHODS AND ANALYSIS: RECORDS, a multicentre, placebo-controlled, biomarker-guided, adaptive Bayesian design basket trial, will randomly assign to a biomarker stratum 1800 adults with community-acquired pneumonia, vasopressor-dependent sepsis, septic shock or acute respiratory distress syndrome. In each stratum, patients will be randomly assigned to receive a 7-day course of hydrocortisone and fludrocortisone or their placebos. Patients with COVID-19 will be treated with a 10-day standard course of dexamethasone and randomised to fludrocortisone or its placebo. Primary outcome will be 90-day death or persistent organ dysfunction. Large simulation study will be performed across a range of plausible scenarios to foresee power to detect a 5%-10% absolute difference with corticosteroids. We will assess subset-by-treatment interaction by estimating in a Bayesian framework two quantities: (1) measure of influence, relying on the value of the estimation of corticosteroids' effect in each subset, and (2) measure of interaction. ETHICS AND DISSEMINATION: The protocol was approved by the Ethics Committee (Comité de Protection des Personnes, Dijon, France), on 6 April 2020. Trial results will be disseminated at scientific conferences and results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT04280497).


Subject(s)
COVID-19 , Sepsis , Adult , Humans , Fludrocortisone/therapeutic use , Bayes Theorem , Adrenal Cortex Hormones/therapeutic use , Sepsis/drug therapy , Biomarkers , Treatment Outcome , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
6.
Respir Res ; 23(1): 329, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2153588

ABSTRACT

BACKGROUND: High-flow nasal oxygen therapy (HFNC) may be an attractive first-line ventilatory support in COVID-19 patients. However, HNFC use for the management of COVID-19 patients and risk factors for HFNC failure remain to be determined. METHODS: In this retrospective study, we included all consecutive COVID-19 patients admitted to our intensive care unit (ICU) in the first (Mars-May 2020) and second (August 2020- February 202) French pandemic waves. Patients with limitations for intubation were excluded. HFNC failure was defined as the need for intubation after ICU admission. The impact of HFNC use was analyzed in the whole cohort and after constructing a propensity score. Risk factors for HNFC failure were identified through a landmark time-dependent cause-specific Cox model. The ability of the 6-h ROX index to detect HFNC failure was assessed by generating receiver operating characteristic (ROC) curve. RESULTS: 200 patients were included: HFNC was used in 114(57%) patients, non-invasive ventilation in 25(12%) patients and 145(72%) patients were intubated with a median delay of 0 (0-2) days after ICU admission. Overall, 78(68%) patients had HFNC failure. Patients with HFNC failure had a higher ICU mortality rate (34 vs. 11%, p = 0.02) than those without. At landmark time of 48 and 72 h, SAPS-2 score, extent of CT-Scan abnormalities > 75% and HFNC duration (cause specific hazard ratio (CSH) = 0.11, 95% CI (0.04-0.28), per + 1 day, p < 0.001 at 48 h and CSH = 0.06, 95% CI (0.02-0.23), per + 1 day, p < 0.001 at 72 h) were associated with HFNC failure. The 6-h ROX index was lower in patients with HFNC failure but could not reliably predicted HFNC failure with an area under ROC curve of 0.65 (95% CI(0.52-0.78), p = 0.02). In the matched cohort, HFNC use was associated with a lower risk of intubation (CSH = 0.32, 95% CI (0.19-0.57), p < 0.001). CONCLUSIONS: In critically-ill COVID-19 patients, while HFNC use as first-line ventilatory support was associated with a lower risk of intubation, more than half of patients had HFNC failure. Risk factors for HFNC failure were SAPS-2 score and extent of CT-Scan abnormalities > 75%. The risk of HFNC failure could not be predicted by the 6-h ROX index but decreased after a 48-h HFNC duration.


Subject(s)
COVID-19 , Cannula , Humans , Critical Illness/epidemiology , Critical Illness/therapy , COVID-19/therapy , Oxygen , Retrospective Studies , Risk Factors
7.
Front Med (Lausanne) ; 8: 810393, 2021.
Article in English | MEDLINE | ID: covidwho-1834428

ABSTRACT

BACKGROUND: The effect of prone positioning (PP) on respiratory mechanics remains uncertain in patients with severe acute respiratory distress syndrome (ARDS) requiring venovenous extracorporeal membrane oxygenation (VV-ECMO). METHODS: We prospectively analyzed the effects of PP on respiratory mechanics from continuous data with over a thousand time points during 16-h PP sessions in patients with COVID-19 and ARDS under VV-ECMO conditions. The evolution of respiratory mechanical and oxygenation parameters during the PP sessions was evaluated by dividing each PP session into four time quartiles: first quartile: 0-4 h, second quartile: 4-8 h, third quartile: 8-12 h, and fourth quartile: 12-16 h. RESULTS: Overall, 38 PP sessions were performed in 10 patients, with 3 [2-5] PP sessions per patient. Seven (70%) patients were responders to at least one PP session. PP significantly increased the PaO2/FiO2 ratio by 14 ± 21% and compliance by 8 ± 15%, and significantly decreased the oxygenation index by 13 ± 18% and driving pressure by 8 ± 12%. The effects of PP on respiratory mechanics but not on oxygenation persisted after supine repositioning. PP-induced changes in different respiratory mechanical parameters and oxygenation started as early as the first-time quartile, without any difference in PP-induced changes among the different time quartiles. PP-induced changes in driving pressure (-14 ± 14 vs. -6 ± 10%, p = 0.04) and mechanical power (-11 ± 13 vs. -0.1 ± 12%, p = 0.02) were significantly higher in responders (increase in PaO2/FiO2 ratio > 20%) than in non-responder patients. CONCLUSIONS: In patients with COVID-19 and severe ARDS, PP under VV-ECMO conditions improved the respiratory mechanical and oxygenation parameters, and the effects of PP on respiratory mechanics persisted after supine repositioning.

8.
Am J Respir Crit Care Med ; 206(3): 281-294, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1832818

ABSTRACT

Rationale: Whether patients with coronavirus disease (COVID-19) may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. Objectives: To estimate the effect of ECMO on 90-day mortality versus IMV only. Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO versus no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 < 80 or PaCO2 ⩾ 60 mm Hg). We controlled for confounding using a multivariable Cox model on the basis of predefined variables. Measurements and Main Results: A total of 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability on Day 7 from the onset of eligibility criteria (87% vs. 83%; risk difference, 4%; 95% confidence interval, 0-9%), which decreased during follow-up (survival on Day 90: 63% vs. 65%; risk difference, -2%; 95% confidence interval, -10 to 5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand and when initiated within the first 4 days of IMV and in patients who are profoundly hypoxemic. Conclusions: In an emulated trial on the basis of a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and regions with ECMO capacities specifically organized to handle high demand.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Adult , COVID-19/complications , COVID-19/therapy , Cohort Studies , Humans , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Retrospective Studies , Treatment Outcome
9.
Crit Care Med ; 50(7): 1103-1115, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1684854

ABSTRACT

OBJECTIVES: Describe the prevalence of acute cerebral dysfunction and assess the prognostic value of an early clinical and electroencephalography (EEG) assessment in ICU COVID-19 patients. DESIGN: Prospective observational study. SETTING: Two tertiary critical care units in Paris, France, between April and December 2020. PATIENTS: Adult critically ill patients with COVID-19 acute respiratory distress syndrome. INTERVENTIONS: Neurologic examination and EEG at two time points during the ICU stay, first under sedation and second 4-7 days after sedation discontinuation. MEASUREMENTS AND MAIN RESULTS: Association of EEG abnormalities (background reactivity, continuity, dominant frequency, and presence of paroxystic discharges) with day-28 mortality and neurologic outcomes (coma and delirium recovery). Fifty-two patients were included, mostly male (81%), median (interquartile range) age 68 years (56-74 yr). Delayed awakening was present in 68% of patients (median awakening time of 5 d [2-16 d]) and delirium in 74% of patients who awoke from coma (62% of mixed delirium, median duration of 5 d [3-8 d]). First, EEG background was slowed in the theta-delta range in 48 (93%) patients, discontinuous in 25 patients (48%), and nonreactive in 17 patients (33%). Bifrontal slow waves were observed in 17 patients (33%). Early nonreactive EEG was associated with lower day-28 ventilator-free days (0 vs 16; p = 0.025), coma-free days (6 vs 22; p = 0.006), delirium-free days (0 vs 17; p = 0.006), and higher mortality (41% vs 11%; p = 0.027), whereas discontinuous background was associated with lower ventilator-free days (0 vs 17; p = 0.010), coma-free days (1 vs 22; p < 0.001), delirium-free days (0 vs 17; p = 0.001), and higher mortality (40% vs 4%; p = 0.001), independently of sedation and analgesia. CONCLUSIONS: Clinical and neurophysiologic cerebral dysfunction is frequent in COVID-19 ARDS patients. Early severe EEG abnormalities with nonreactive and/or discontinuous background activity are associated with delayed awakening, delirium, and day-28 mortality.


Subject(s)
Brain Diseases , COVID-19 , Delirium , Respiratory Distress Syndrome , Adult , Aged , Brain , Brain Diseases/etiology , COVID-19/complications , Coma/diagnosis , Coma/etiology , Critical Illness , Delirium/diagnosis , Delirium/epidemiology , Delirium/etiology , Female , Humans , Intensive Care Units , Male , Prospective Studies , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy
10.
Sci Rep ; 12(1): 1462, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-1655608

ABSTRACT

Managing patients with acute respiratory distress syndrome (ARDS) requires frequent changes in mechanical ventilator respiratory settings to optimize arterial oxygenation assessed by arterial oxygen partial pressure (PaO2) and saturation (SaO2). Pulse oxymetry (SpO2) has been suggested as a non-invasive surrogate for arterial oxygenation however its accuracy in COVID-19 patients is unknown. In this study, we aimed to investigate the influence of COVID-19 status on the association between SpO2 and arterial oxygenation. We prospectively included patients with ARDS and compared COVID-19 to non-COVID-19 patients, regarding SpO2 and concomitant arterial oxygenation (SaO2 and PaO2) measurements, and their association. Bias was defined as mean difference between SpO2 and SaO2 measurements. Occult hypoxemia was defined as a SpO2 ≥ 92% while concomitant SaO2 < 88%. Multiple linear regression models were built to account for confounders. We also assessed concordance between positive end-expiratory pressure (PEEP) trial-induced changes in SpO2 and in arterial oxygenation. We included 55 patients, among them 26 (47%) with COVID-19. Overall, SpO2 and SaO2 measurements were correlated (r = 0.70; p < 0.0001), however less so in COVID-19 than in non-COVID-19 patients (r = 0.55, p < 0.0001 vs. r = 0.84, p < 0.0001, p = 0.002 for intergroup comparison). Bias was + 1.1%, greater in COVID-19 than in non-COVID-19 patients (2.0 vs. 0.3%; p = 0.02). In multivariate analysis, bias was associated with COVID-19 status (unstandardized ß = 1.77, 95%CI = 0.38-3.15, p = 0.01), ethnic group and ARDS severity. Occult hypoxemia occurred in 5.5% of measurements (7.7% in COVID-19 patients vs. 3.4% in non-COVID-19 patients, p = 0.42). Concordance rate between PEEP trial-induced changes in SpO2 and SaO2 was 84%, however less so in COVID-19 than in non-COVID-19 patients (69% vs. 97%, respectively). Similar results were observed for PaO2 regarding correlations, bias, and concordance with SpO2 changes. In patients with ARDS, SpO2 was associated with arterial oxygenation, but COVID-19 status significantly altered this association.


Subject(s)
COVID-19/complications , Hypoxia/etiology , Respiratory Distress Syndrome/etiology , Adult , Aged , Ethnicity , Female , France , Humans , Male , Middle Aged , Oximetry , Prospective Studies
12.
BMJ Open ; 11(5): e045041, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1259009

ABSTRACT

INTRODUCTION: International guidelines include early nutritional support (≤48 hour after admission), 20-25 kcal/kg/day, and 1.2-2 g/kg/day protein at the acute phase of critical illness. Recent data challenge the appropriateness of providing standard amounts of calories and protein during acute critical illness. Restricting calorie and protein intakes seemed beneficial, suggesting a role for metabolic pathways such as autophagy, a potential key mechanism in safeguarding cellular integrity, notably in the muscle, during critical illness. However, the optimal calorie and protein supply at the acute phase of severe critical illness remains unknown. NUTRIREA-3 will be the first trial to compare standard calorie and protein feeding complying with guidelines to low-calorie low-protein feeding. We hypothesised that nutritional support with calorie and protein restriction during acute critical illness decreased day 90 mortality and/or dependency on intensive care unit (ICU) management in mechanically ventilated patients receiving vasoactive amine therapy for shock, compared with standard calorie and protein targets. METHODS AND ANALYSIS: NUTRIREA-3 is a randomised, controlled, multicentre, open-label trial comparing two parallel groups of patients receiving invasive mechanical ventilation and vasoactive amine therapy for shock and given early nutritional support according to one of two strategies: early calorie-protein restriction (6 kcal/kg/day-0.2-0.4 g/kg/day) or standard calorie-protein targets (25 kcal/kg/day, 1.0-1.3 g/kg/day) at the acute phase defined as the first 7 days in the ICU. We will include 3044 patients in 61 French ICUs. Two primary end-points will be evaluated: day 90 mortality and time to ICU discharge readiness. The trial will be considered positive if significant between-group differences are found for one or both alternative primary endpoints. Secondary outcomes include hospital-acquired infections and nutritional, clinical and functional outcomes. ETHICS AND DISSEMINATION: The NUTRIREA-3 study has been approved by the appropriate ethics committee. Patients are included after informed consent. Results will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT03573739.


Subject(s)
COVID-19 , Diet, Protein-Restricted , Adult , Critical Illness , Humans , Respiration, Artificial , SARS-CoV-2
13.
Chest ; 159(6): 2309-2317, 2021 06.
Article in English | MEDLINE | ID: covidwho-1064065

ABSTRACT

BACKGROUND: Patients with obesity are at higher risk for community-acquired and nosocomial infections. However, no study has specifically evaluated the relationship between obesity and ventilator-associated pneumonia (VAP). RESEARCH QUESTION: Is obesity associated with an increased incidence of VAP? STUDY DESIGN AND METHODS: This study was a post hoc analysis of the Impact of Early Enteral vs Parenteral Nutrition on Mortality in Patients Requiring Mechanical Ventilation and Catecholamines (NUTRIREA2) open-label, randomized controlled trial performed in 44 French ICUs. Adults receiving invasive mechanical ventilation and vasopressor support for shock and parenteral nutrition or enteral nutrition were included. Obesity was defined as BMI ≥ 30 kg/m2 at ICU admission. VAP diagnosis was adjudicated by an independent blinded committee, based on all available clinical, radiologic, and microbiologic data. Only first VAP episodes were taken into account. Incidence of VAP was analyzed by using the Fine and Gray model, with extubation and death as competing risks. RESULTS: A total of 699 (30%) of the 2,325 included patients had obesity; 224 first VAP episodes were diagnosed (60 and 164 in obese and nonobese groups, respectively). The incidence of VAP at day 28 was 8.6% vs 10.1% in the two groups (hazard ratio, 0.85; 95% CI 0.63-1.14; P = .26). After adjustment on sex, McCabe score, age, antiulcer treatment, and Sequential Organ Failure Assessment at randomization, the incidence of VAP remained nonsignificant between obese and nonobese patients (hazard ratio, 0.893; 95% CI, 0.66-1.2; P = .46). Although no significant difference was found in duration of mechanical ventilation and ICU length of stay, 90-day mortality was significantly lower in obese than in nonobese patients (272 of 692 [39.3%] patients vs 718 of 1,605 [44.7%]; P = .02). In a subgroup of patients (n = 123) with available pepsin and alpha-amylase measurements, no significant difference was found in rate of abundant microaspiration of gastric contents, or oropharyngeal secretions between obese and nonobese patients. INTERPRETATION: Our results suggest that obesity has no significant impact on the incidence of VAP.


Subject(s)
Body Mass Index , Intensive Care Units , Obesity/complications , Pneumonia, Ventilator-Associated/etiology , Respiration, Artificial/adverse effects , Shock/therapy , Aged , Female , France/epidemiology , Humans , Incidence , Male , Middle Aged , Parenteral Nutrition, Total/methods , Pneumonia, Ventilator-Associated/epidemiology , Prevalence , Prognosis , Risk Factors , Survival Rate/trends
14.
Front Cardiovasc Med ; 8: 614562, 2021.
Article in English | MEDLINE | ID: covidwho-1127976

ABSTRACT

Background: Takotsubo cardiomyopathy is triggered by emotional or physical stress. It is defined as a reversible myocardial dysfunction, usually with apical ballooning aspect due to apical akinesia associated with hyperkinetic basal left ventricular contraction. Described in cases of viral infections such as influenza, only few have been reported associated with novel coronavirus disease 2019 (COVID-19) in the recent pandemic. Case summary: A 79-years-old man, with cardiovascular risk factors (type 2 diabetes and hypertension) and chronic kidney disease, presented to the emergency room for severe dyspnea after 8 days of presenting respiratory symptoms and fever. Baseline electrocardiogram (ECG) was normal, but he presented marked inflammatory syndrome. He was transferred to an intensive care unit to receive mechanical ventilation within 6 h, due to acute respiratory distress syndrome. He presented circulatory failure 2 days after, requiring norepinephrine support (up to up to 1.04 µg/kg/min). Troponin T was elevated (637 ng/l). ECG showed diffuse T wave inversion. Echocardiography showed reduced left ventricular ejection fraction (LVEF 40%), with visual signs of Takotsubo cardiomyopathy. Cardiac failure resolved after 24 h with troponin T decrease (433 ng/l) and restoration of cardiac function (LVEF 60% with regression of Takotsubo features). Patient died after 15 days of ICU admission, due to septic shock from ventilator-acquired pneumonia. Cardiac function was then normal. Conclusion: Mechanisms of Takotsubo cardiomyopathy in viral infections include catecholamine-induced myocardial toxicity and inflammation related to sepsis. Differential diagnoses include myocarditis and myocardial infarction. Evidence of the benefit of immunomodulatory drugs and dexamethasone are growing to support this hypothesis in COVID-19.

15.
Front Med (Lausanne) ; 7: 614569, 2020.
Article in English | MEDLINE | ID: covidwho-1000108

ABSTRACT

Acute respiratory distress syndrome (ARDS) related to Coronavirus disease (COVID-19) is associated with high mortality. It has been suggested that venovenous extracorporeal membrane oxygenation (ECMO) was suitable in this indication, albeit the effects of ECMO on the mechanical respiratory parameters have been scarcely described. In this case-series, we prospectively described the use of venovenous ECMO and its effects on mechanical respiratory parameters in eleven COVID-19 patients with severe ARDS. Implantation of ECMO occurred 6 [3-11] days after the onset of mechanical ventilation. At the time of ECMO implantation, all patients received neuromuscular blocking agents, three (27%) received inhaled nitric oxide and prone positioning was performed in all patients with 4 [3-5] sessions of PP per patient. Under ECMO, the tidal volume was significantly decreased from 6.1 [4.0-6.3] to 3.4 [2.5-3.6] mL/kg of predicted body weight and the positive end-expiratory pressure level was increased by 25 ± 27% whereas the driving pressure and the mechanical power decreased by 33 ± 25% and 71 ± 27%, respectively. The PaO2/FiO2 ratio significantly increased from 68 [58-89] to 168 [137-218] and the oxygenation index significantly decreased from 28 [26-35] to 13 [10-15]. The duration of ECMO was 12 [8-25] days. Nine (82%) patients experienced ECMO-related complications and the main complication was major bleeding requiring blood transfusions. Intensive care unit mortality rate was 55% but no patient died from ECMO-related complications. In COVID-19 patients with severe ARDS, venovenous ECMO allowed ultra-protective ventilation, improved oxygenation and should be considered in highly selected patients with the most severe ARDS.

16.
Chest ; 159(5): 1974-1985, 2021 05.
Article in English | MEDLINE | ID: covidwho-950087

ABSTRACT

BACKGROUND: Cardiac injury has been reported in up to 30% of coronavirus disease 2019 (COVID-19) patients. However, cardiac injury is defined mainly by troponin elevation without description of associated structural abnormalities and its time course has not been studied. RESEARCH QUESTION: What are the ECG and echocardiographic abnormalities as well as their time course in critically ill COVID-19 patients? STUDY DESIGN AND METHODS: The cardiac function of 43 consecutive COVID-19 patients admitted to two ICUs was assessed prospectively and repeatedly, combining ECG, cardiac biomarker, and transthoracic echocardiographic analyses from ICU admission to ICU discharge or death or to a maximum follow-up of 14 days. Cardiac injury was defined by troponin elevation and newly diagnosed ECG or echocardiographic abnormalities, or both. RESULTS: At baseline, 49% of patients demonstrated a cardiac injury, and 70% of patients experienced cardiac injury within the first 14 days of ICU stay, with a median time of occurrence of 3 days (range, 0-7 days). The most frequent abnormalities were ECG or echocardiographic signs, or both, of left ventricular (LV) abnormalities (87% of patients with cardiac injury), right ventricular (RV) systolic dysfunction (47%), pericardial effusion (43%), new-onset atrial arrhythmias (33%), LV relaxation impairment (33%), and LV systolic dysfunction (13%). Between baseline and day 14, the incidence of pericardial effusion and of new-onset atrial arrhythmias increased and the incidence of ECG or echocardiographic signs, or both, of LV abnormalities as well as the incidence of LV relaxation impairment remained stable, whereas the incidence of RV and LV systolic dysfunction decreased. INTERPRETATION: Cardiac injury is common and early in critically ill COVID-19 patients. ECG or echocardiographic signs, or both, of LV abnormalities were the most frequent abnormalities, and patients with cardiac injury experienced more RV than LV systolic dysfunction.


Subject(s)
COVID-19 , Echocardiography/methods , Electrocardiography/methods , Heart Diseases , Troponin/blood , Ventricular Dysfunction, Left , Biomarkers/blood , COVID-19/complications , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/therapy , Critical Illness/epidemiology , Critical Illness/therapy , Female , France/epidemiology , Heart Diseases/blood , Heart Diseases/diagnosis , Heart Diseases/epidemiology , Heart Diseases/etiology , Humans , Incidence , Intensive Care Units/statistics & numerical data , Male , Middle Aged , SARS-CoV-2 , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL